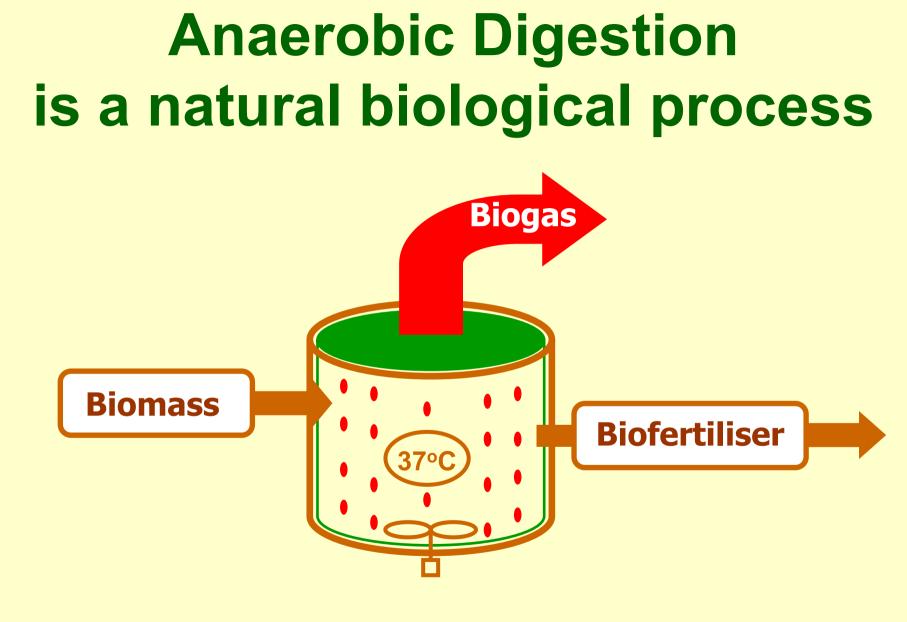
Anaerobic Digestion & Biogas Technology within UK Agriculture

Greenfinch Ltd



GREENFINCH LTD

- Based in Ludlow, south Shropshire.
- Specialise in anaerobic digestion.
- 8 years of R&D into the AD of food waste.
- Constructed 7 on-farm AD plants in Scotland.
- Constructed the UK's first biowaste digester in south Shropshire.

AD is a 3-Product Process

Most renewable energy & bioenergy technologies do only one thing – produce energy.

Anaerobic digestion is a 3-product process:

- AD is a waste management process;
- AD is a nutrient recycling process; and
- AD is a renewable energy process.

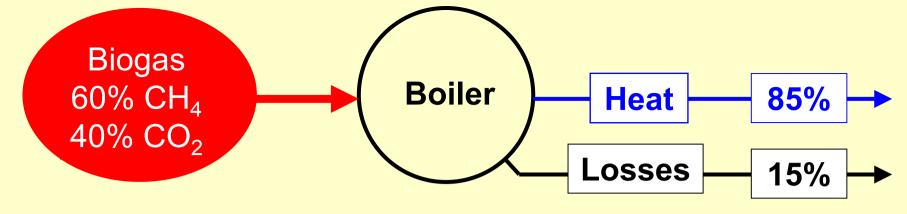
As such it has tended to get lost in policy making.

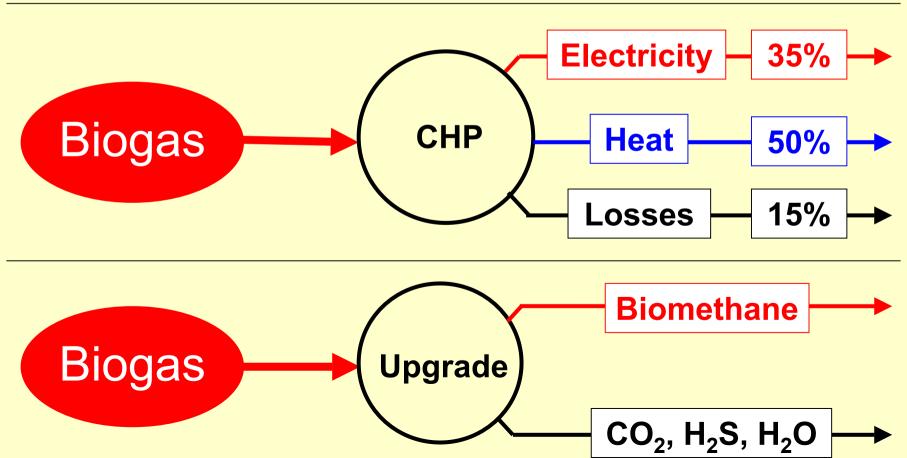
Anaerobic Digestion Feedstock

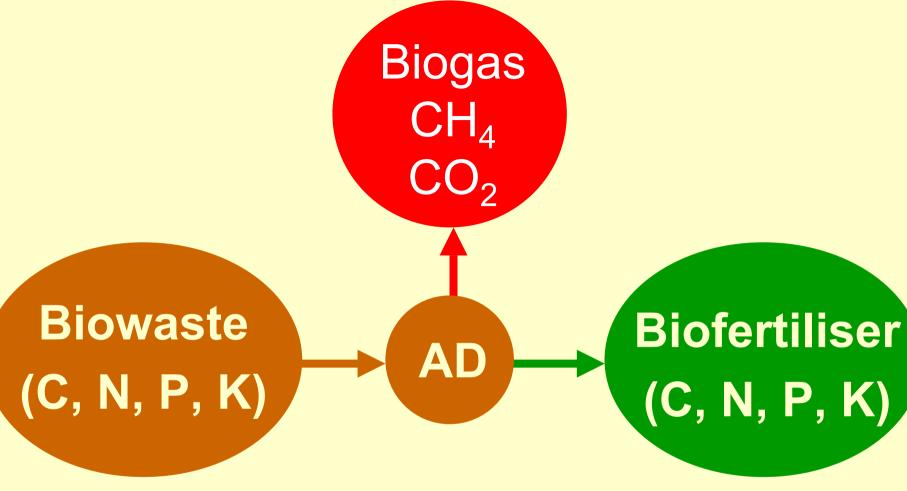
NON-ABP

- Energy crops
- Animal slurry
- Sewage sludge

ABP

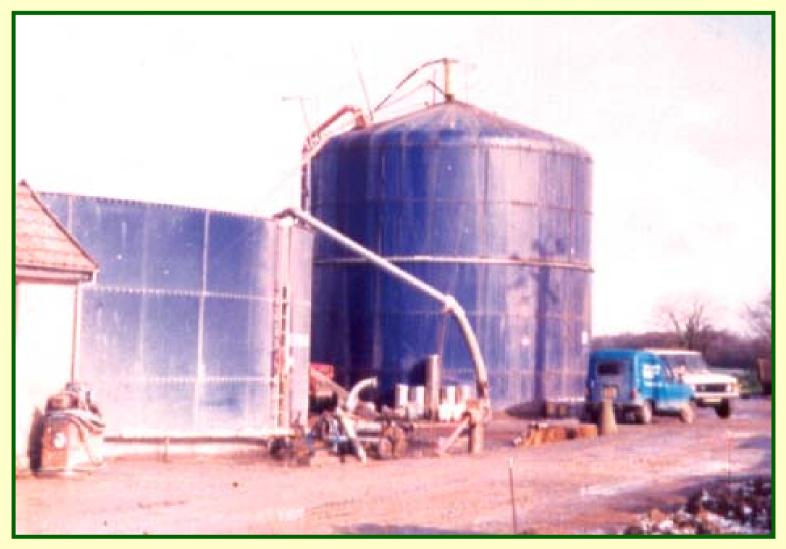

- Food processing and abattoir waste
- Source-separated biowaste
- Commercial catering waste
- Mixtures of the above


Gas Yields


Feedstock	m ³ _{CH4} .t fresh matter ⁻¹
Food Waste	66
Sewage Sludge	13
Cow Slurry	11
Pig Slurry	12
Wholecrop Cereal	126

Biofuel Comparison

Crop	Biofuel	Energy Balance GJ.ha ⁻¹ .y ⁻¹	Energy Ratio (input:output)
Wheat	Bioethanol	34.67	1:2.3
Wheat	Biogas	68.48	1:3
Oilseed Rape	Biodiesel	18.25	1:1.8



Digestate Nutrient Values

- Nitrogen 2.3 4.2 kg/tonne
- Phosphorus 0.2 1.5 kg/tonne
- Potassium 1.3 5.2 kg/tonne

On-Farm AD Plants in UK

Pig Farm Digester (1970s)

Cattle Farm Digester (1980s)

Cow Slurry Digester (2004)

Pig Farm + Food Waste (2006)

Slurry is pumped from the slats by a tractor-pump

CUP

HK 3000

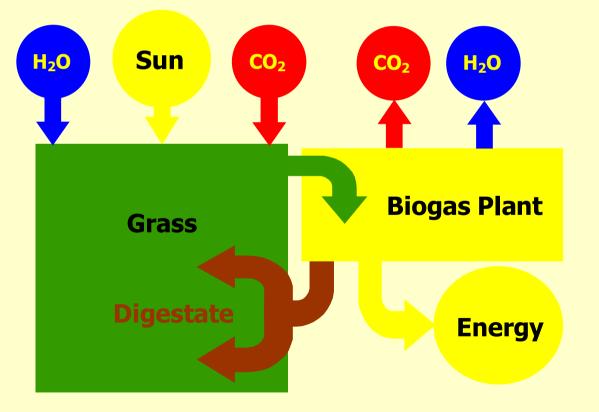
Above-ground reception tank

Reception Tank

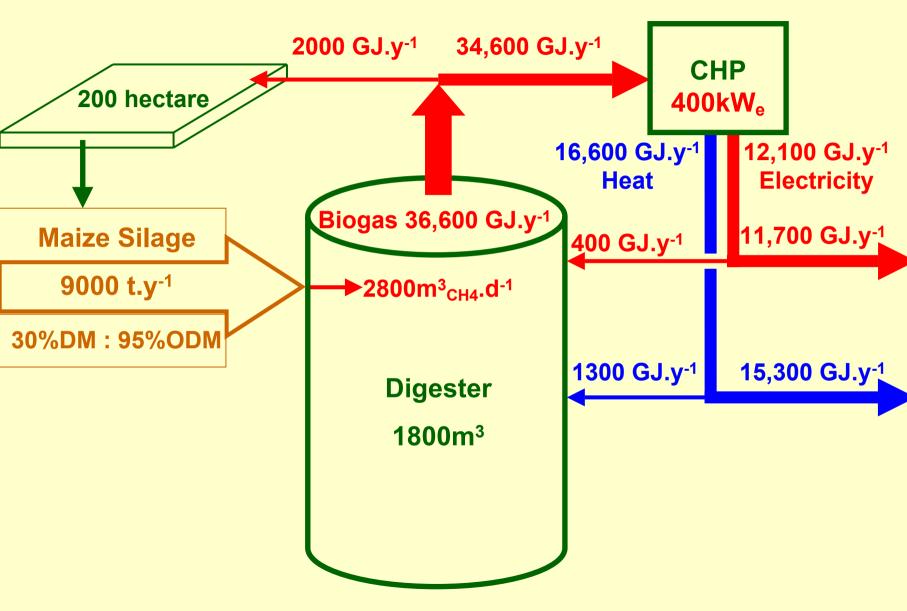
Digestate Storage

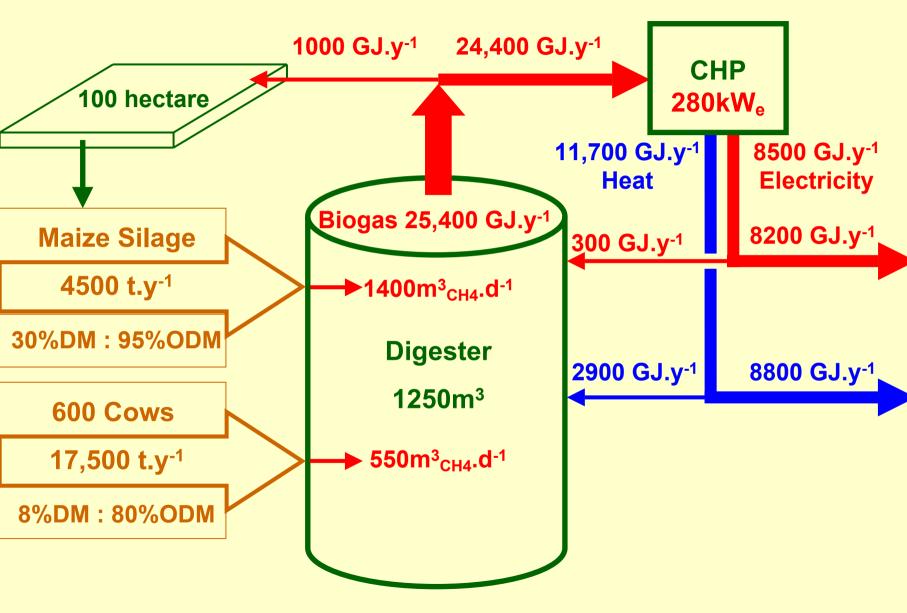
Completed 80 m³ Biogas Plant

Auger Feed Systems

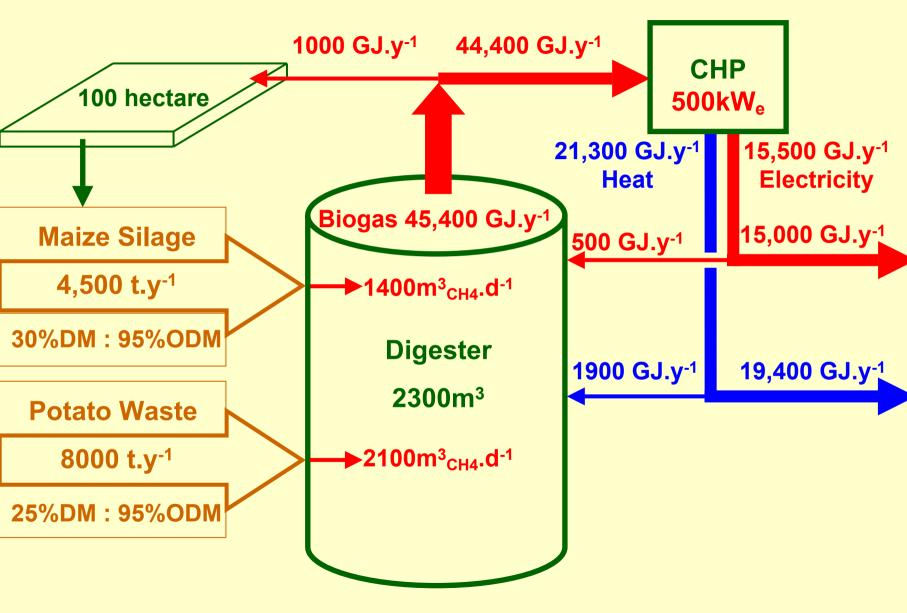

Anaerobic Digestion of Energy Crops

 A pan-European consortium investigating the production of biogas from agri-waste & energy crops.


Crop Digestion Trials


Energy Crop Parameters

Crop Variety		Maize	Ryegrass	WC Winter Wheat
Crop Yield	t _{wer} .ha ⁻¹ .y ⁻¹	45	56	36.5
Dry Matter	%DM	30	20	40
Organic Dry Matter	%ODM	95	88	90
ODM Yield	t _{орм} .ha ⁻¹ .y ⁻¹	12.8	9.8	13.1
Methane Yield	m ³ _{CH4} .t ⁻¹ _{ODM}	400	340	350
Gross Energy Yield	GJ.ha ⁻¹ .y ⁻¹	182	120	163
Gross Energy Yield	kW _f .ha⁻¹	5.8	3.8	5.2
Energy for Crop Production	GJ.ha ⁻¹ .y ⁻¹	10	24	10
Energy for Crop Production	kW _f .ha⁻¹	0.3	0.8	0.3
Net Energy Output	GJ.ha ⁻¹ .y ⁻¹	172	96	153
Net Energy Output	kW _f .ha⁻¹	5.5	3.0	4.9
Crop Production Cost	£.ha ⁻¹ .y ⁻¹	£720	£450	£625


Energy Balance: Maize Silage

Energy Balance: Maize + Cow Manure

Energy Balance: Maize + Potato Waste

Commercial Analysis

		Maize	Maize + Pigs	Maize +Potato
Sale of Electricity	£.y ⁻¹	295,000	205,000	376,000
Sale of Heat	£.y ⁻¹	17,000	17,000	17,000
TOTAL INCOME	£.y ⁻¹	312,000	222,000	393,000
Cost of Energy Crop	£.y ⁻¹	144,000	72,000	72,000
Cost of Labour	£.y ⁻¹	14,000	14,000	14,000
Cost of Maintenance	£.y ⁻¹	57,000	40,000	74,000
TOTAL COSTS	£.y ⁻¹	215,000	126,000	160,000
INCOME LESS COSTS	£.y ⁻¹	97,000	96,000	233,000
CAPITAL COST	£	800,000	700,000	900,000
PAY-BACK	yrs	8.2	7.3	3.9

Economic Viability Depends on:

- Housed Time of Stock
- On Site Heat Use
- Electricity Use
 - » On site = 11p/kWhr
 - » Export to grid = 8p/kWhr
- Production of waste on site
- Use of Energy Crops
- Sale/Value of Bio-fertiliser
- Gate Fees

Permitting

- <u>Planning Permission:</u> Application to local planning authority; if waste is included it must go to county planning.
- <u>Waste Management License:</u> Application to the Environment Agency.
- <u>Animal By-Products Approval:</u> Application to State Veterinary Service if ABPs are to be processed.
- <u>Renewable Electricity Accreditation:</u> Application to Ofgem.
- <u>Biofertiliser Land Use Exemption</u>: If waste is imported application to EA.

Low-Carbon Process

- Anaerobic digestion reduces greenhouse gas emissions in 4 ways:
- by preventing the uncontrolled emissions of CH₄ (22 times more powerful than CO₂);
- by beneficial use of the biofertiliser in agriculture, displacing mineral fertilisers;
- by reducing the transport of waste; and
- by the production of renewable electricity & heat.

Conclusions

- As yet there are no grants available to help with the high capital cost, which is preventing small scale digesters from emerging.
- Co-digestion of energy crops with food waste & animal manure is becoming economic in the UK.
- The economics are improved if;
 - the electricity is used on site, for example for refrigeration;
 - there is a use for the heat;
 - if there is a market for the bio-fertiliser, on or offsite.
- We expect the first UK energy crop AD plant to be built in 2007.....

www.cropgen.soton.ac.uk

Greenfinch

www.greenfinch.co.uk