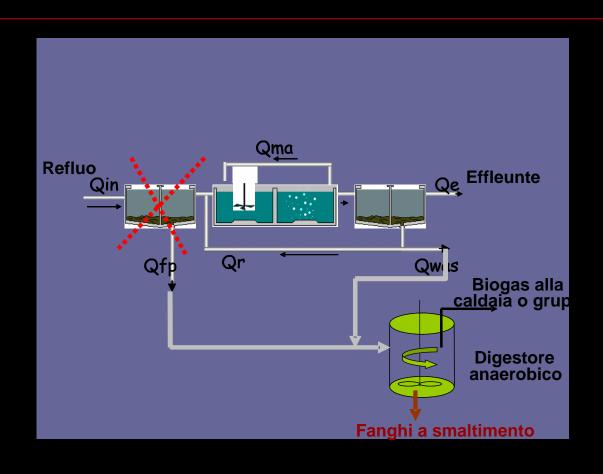
Il processo di codigestione anaerobica dei fanghi di depurazione e substrati ad alta biodegradabilità

Prof. Paolo Pavan
Università di Venezia
Dipartimento di Scienze Ambientali
Dorsoduro 2137 – 30123 Venezia

La situazione normativa italiana in merito ai processi biologici applicati a matrici organiche:


ART.4 del D.Lgs. n.22/1997

- 1) "Ai fini di una corretta gestione dei rifiuti le autorità competenti favoriscono la riduzione dello smaltimento finale dei rifiuti attraverso l'utilizzazione principale dei rifiuti come combustibile o come altro mezzo per produrre energia"
- 2) "Il riutilizzo, il riciclaggio e il recupero di materia prima debbono essere considerati preferibili rispetto alle altre forme di smaltimento"

Allegato C-OPERAZIONI DI RECUPERO

"Riciclo/recupero delle sostanze organiche non utilizzate come solventi (comprese le operazioni di compostaggio e altre trasformazioni biologiche)"

L'abbattimento dei nutrienti su logica BNR porta ad eliminare la sedimentazione primaria

Conseguenza

-l digestori anaerobici operano generalmente in condizioni di basso carico

(< 1 kgVS/m³day)

- il fango biologico è già parzialmente stabilizzato

- basse produzioni specifiche di gas: 0,1 − 0,2 m³/kgVSa
- bilancio energetico negativo
- bassa stabilizzazione: rimozione della sostanza organica del 20%

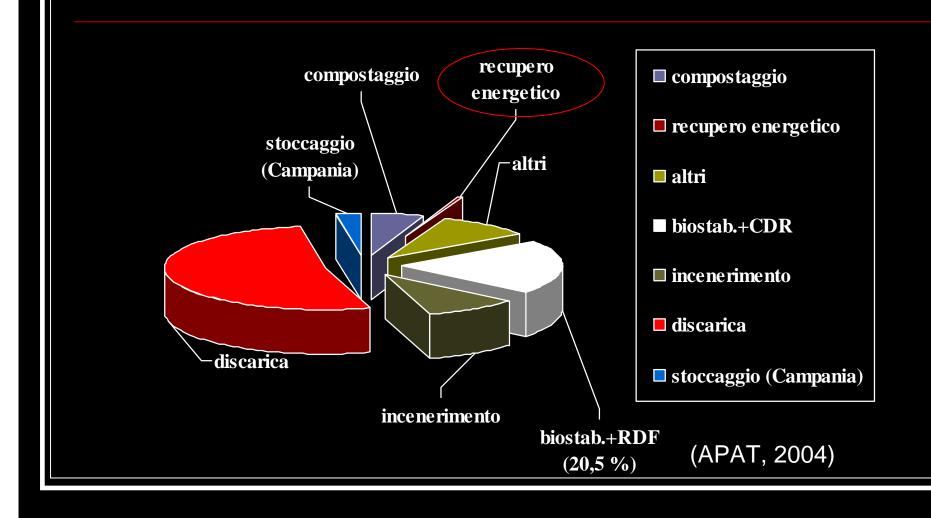
I substrati utilizzabili:

Matrice	Resa energetica KWh/tonn TS
Barbabietola da zucchero	179-192
Silaggio?	454-467
Paglia d' avena?	640-825
Deiezioni	70-90
Rifiuti mercatali	630-810
MS-FORSU	210-270
SS-FORSU	360-450
SC-FORSU	500-700
Fanghi di supero	70-140

Esperienze europee

2000-2005:

- Unione Europea:


il numero di impianti che utilizzano il trattamento di digestione anaerobica sono aumentati da 53 a 124 a causa del drammatico aumento della produzione di rifiuti organici.

fine 2006:

è prevista una produzione di rifiuti pari a 3.905.000 ton/anno, quattro volte maggiore della produzione nel 2000; solamente il 7% degli impianti a disposizione applicano la co-digestione.

L'applicazione della co-digestione anaerobica permette di sfruttare la frazione organica dei rifiuti per la produzione di biogas. In Europa 9 su 20 impianti di AD sono operativi in Danimarca per la codigestione di deiezioni animali e la frazione organica dei rifiuti solidi; in Germania 2 impianti di trattamento di acque reflue (350,000 and 130,000 A.E.) hanno avviato il trattamento di codigestione dei rifiuti solidi.

L'utilizzo della FORSU in Italia

Il progetto Cropgen

L'obiettivo generale del progetto è produrre dalla biomassa una fonte sostenibile di combustibile.

Il lavoro di ricerca è basato sull'impiego della digestione anaerobica come processo finalizzato alla produzione di metano dalla biomassa, utilizzando substrati organici, comprese piante coltivate a fini energetici e residui agricoli.

Il progetto Cropgen

I Membri coinvolti nel progetto:

University of Southampton, UK (Soton)

University of Jyväskylä, Finland (JyU)

Wageningen University, Netherlands (WU)

BOKU University, Austria (BOKU IFA-Tulln)

BOKU University, Austria (BOKU IAM)

University of Venice, Italy (UNIVE-DSA)

University of Verona, Italy (UNIVR-DST)

Instituto de la Grasa, Spain (CSIC)

Greenfinch Ltd, UK (Greenfinch)

Organic Power Ltd, UK (OPL)

Metener Ltd, Finland (Metener)

Il progetto Cropgen

Il lavoro di ricerca dell'Università di Venezia:

- 1) Valutazione dei vantaggi legati alla codigestione di fanghi di supero e rifiuti organici, utilizzando il processo di digestione anaerobica in fase singola ed in regime termofilo. I risultati ottenuti sono stati utilizzati per definire le condizioni ottimali di HRT/OLR in modo da ottenere delle rese migliori e delle migliori condizioni di stabilità.
- 2) Studio della produzione di biogas dal punto di vista cinetico; applicazione delle stesse condizioni operative utilizzate nel primo periodo al processo di AD a fasi separate.

L'impianto pilota-fase singola

Volume utile: 200 lt

Agitazione: meccanica

Riscaldamento: elettrico a 55°C +/- 1°C

Alimentazione: giornaliera

L'impianto pilota-fasi separate

Volume utile: 800 It

Agitazione: meccanica

Riscaldamento: elettrico a 55°C +/- 1°C

Alimentazione: giornaliera

Prima fase

Digestore

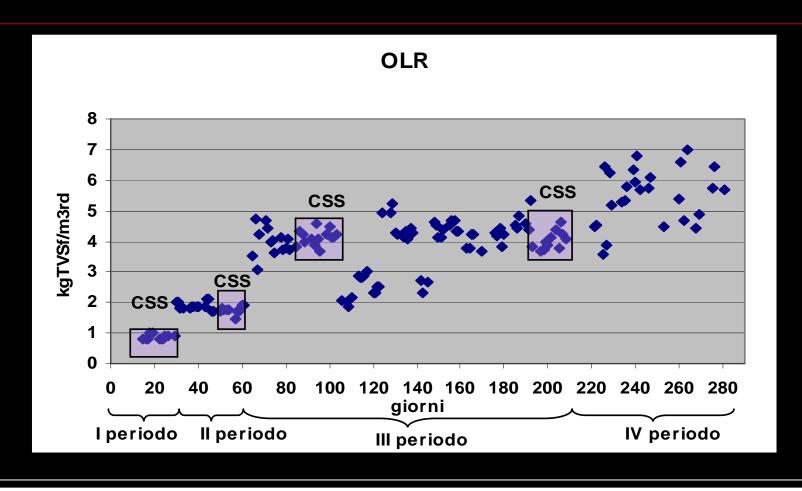
Condizioni operative

Fase singola:

Periodo	I	II	III	IV	
Condizioni operative					
T, °C	55.0	54.8	54.5	55.1	
HRT (giorni)	20	18	16	14	
OLR (kgTVSa/m³r)	0,66	2,19	3,97	6,18	

Due fasi:

Periodo	I	II	II	IV
Condizioni operative				
T, °C (I fase)	55.1	55.3	54.7	54,8
T, °C (II fase)	55.0	55.1	54.9	53,5
HRT, giorni (I fase)	1	1	1	1
HRT, giorni (II fase)	16.0	14.1	13.6	12,9
OLR, kgTV5/m3 d(I fase)	12.4	26.1	56.3	74,4
OLR, kgTV5/m3 d (II fase)	0.84	1.82	4.15	5,70

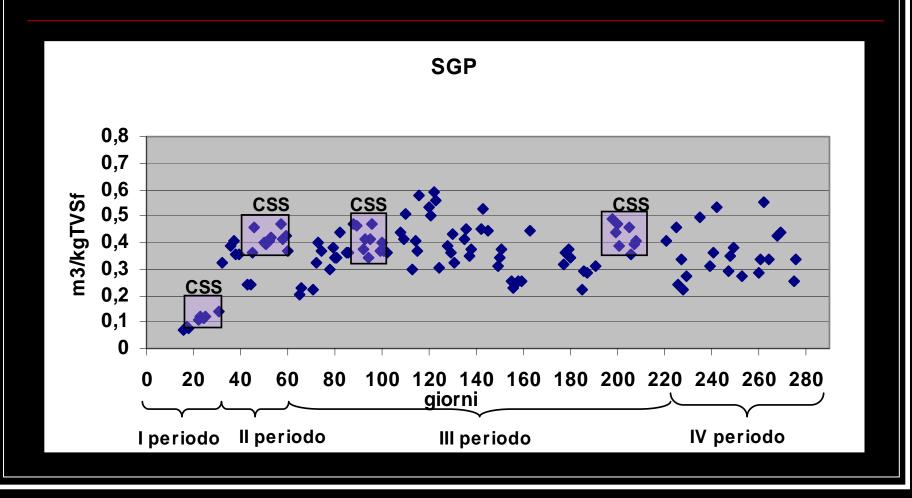


Caratteristiche del substrato

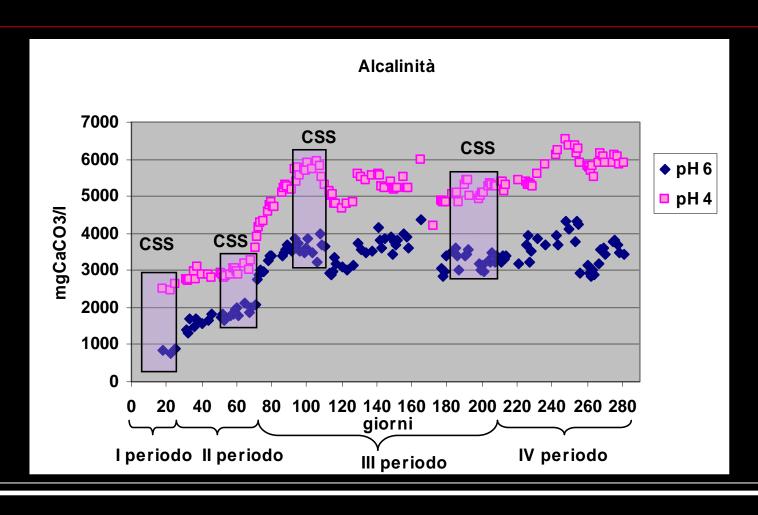
Periodo	I	п	III	IV
Fango di supero				
pH	6,81	7,16	7,01	7,03
NH3 (mg/l)	2,4	4	8,6	7,0
TKN (mgN/l)	1.341	778	2.127	1.520
Ptot (mgP/gTS)	15,5	15,6	13,7	13,8
COD (mgCOD/l)	13.079	8.391	26.651	20.933
T5 (g/l)	22,9	16,4	47,9	35,8
TV5 (g/l)	14,3	10,5	25,8	21,1
TV5 (%T5)	62,73	64,2	53	59
VFA (mgCOD/l)	9,8	26,7	76,0	115,0
Ri	fiuti merco	tali		
TKN (mgN/gTS)		31	33	30,37
Ptot (mgP/gTS)		3,4	3,6	4,4
COD (mgCOD/l)		200.000	210.790	194. 150
T5 (g/l)		250	283	213
TV5 (g/l)		210,6	238,0	184,72
TVS (%TS)		82,4	83,7	86,7
VFA (mgCOD/l)			1.059	



OLR applicato – due fasi



Rese biogas - GPR



Rese biogas - SGP

Parametri di stabilità - Alcalinità

Rese (condizioni di stato stazionario)

Periodo	I	II	III	IV
GPR (m3/m3r d)	0,10	0,71	1,6	2,25
SGP (m3/kgTVSf)	0,12	0,41	0,39	0,36
SGP _{fango} (m3/kgTVSf)	0,12	0,12	0,12	0,12
SGP _{FORSU} (m3/kgTVSf)	-	0,58	0,54	0,60
CH4, %		73	72	70
TVS riduzione, %	18	51	58	58
HRT 1° fase (d)	1	1	1	1
HRT 2° fase (d)	16,0	14,1	13,6	12,9

Grazie per l'attenzione