

Optimizing anaerobic digestion of agricultural substrates

Claudia Pabón Pereira MSc - PhD candidate

Tania Fernandes MSc - PhD candidate

Anaerobic digestion process

Anaerobic potential of different substrates

	Aerobic sludge	Substrate	BMP (ICH ₄ /gVS)	Methane yield (m ³ CH ₄ /ton _{ww}
	Industrial waste	Slaughterhouse waste	0.57	150
	OFMSW	OFMSW	0.5-0.6	100-150
	Energy crops	Energy crops	0.30-0.50	30-100
X	Crop residues	Straws, sugar beet tops	0.2 - 0.4	36-145
Starting and	Марика	Pig manure	0.29 - 0.37	17-22
1 Read	Mallule	Cow manure	0.11 - 0.24	7-14

(Lehtomaki,2005)

Codigestion of crops and manure

Lehtomakki, 2005

Recent trends

- **Austria:** 139 plants + 50 u.c.; 200 GWh (2004). Preferential rates and guaranteed purchase.
- **Denmark:** 22 CAD +40 farm scale digesters. Investment grants, long terms loans with low interest rate, tax exemption. Slurry storage required.
- Germany: ~4000 plants and 950 MW in 2005. 1800 in 2002, and only 450 in 1997; Guaranteed priority purchase, preferential rates, bonus for energy crops, subsidies.
- **Sweden:** 10 CAD +5 farm scale digesters. Use of biogas as vehicle fuel.
- Netherlands: ~ 37 registered plants. 22 use the energy for themselves; 7 use the energy for themselves and sell it to third parties; 8 sell the produced energy to third parties.

(Rintala , 2005)(Weiland, 2003) (Wulf, 2005) (© CBS, data from 2003)

Recent trends

- All important agricultural crops can be used for biogas production.
- In Germany, in 94% of the cases manure is used as a base material for digestion.
- Few experiences are available from plants with monofermentation of energy crops.
- CSTRs are preferred. One or two stage processes.
- Long Hydraulic Retention Times (60-90 days) and low Organic Loading Rates (1-2 Kg/m3.d)

Weiland, 2005

Challenges remaining

- **Technical challenge**: For increasing the process efficiency and reliability the whole process chain has to be optimized.
- Design challenge: Accuracy and simplification is needed in the design of reactors

Design parameters of anaerobic digesters

- Composition of substrates (TS, VS, COD, others)
- Biodegradability (BMP) and hydrolysis constant (Kh) of substrates
- Presence of inhibiting compounds (NH₄+, humic acids, and intermediary products as LCFA, VFA, H₂S & glucose)

The need for a simple method

250.000 species of higher plants in the world

1000 species comprise the species cultivated to provide, food, industrial and construction materials

Different **manures** show different composition, i.e. cow manure has lower nutrient content and higher C/N ratio than pig manure

Biodegradability of different substrates

BMP range	0.15 - 0.54 I CH ₄ /gVS
Standard deviation	5-10%

However among authors values can differ strongly for a single plant specie.

Why this variation?

From the substrate:

Ex. Different variety, growth conditions, harvest time. 30-60%.

(Pouech et al. 1998)(Lehtomaki 2006)

Anaerobic Biodegradability tests are not standardized

There is substantial uncertainty in the determination

(Hansen et al , 2004);(Rozzi and Remigi, 2004); (Muller, 2004);(Colleran et al. 1992)

Factors that may influence the assessment...

- Substrate: pretreatments (particle size, storage)
- Inoculum : Type (source, structure), age, concentration (S/I)
- Buffer solution
- Macronutrients and trace elements
- Equipment: type of bioassay (batch, continuous)
- **Operating conditions**: temperature, pH, sampling frequency.

(Hansen et al , 2004);(Rozzi and Remigi, 2004); (Muller, 2004);(Colleran et al. 1992)

- So far differences of 25 50% had been found when varying test conditions.
- The need for an standardized test is imminent
- Also the need for reporting findings in a complete way:
 - Characteristics of plant material digested
 - Characteristics of the test performed

What would be a good BMP and hydrolysis test?

Inhibition of hydrolysis

Temperature	described by Arrhenius equation (kh) (Veeken and Hamelers 1999)
рН	max. enzyme activity at 6 – 8 (Sanders 2001) (Veeken et al. 2000)
Hydrolysis products	ex. production of cellulases inhibited by 1 [glucose] (Angelidaki & Sanders 2004)
LCFA	at liquid-water interface inhibits lipases (ex. Surface tensions) (Verger 1980; Angelidaki & Ahring 1992)
Humic substances	Humic acids and fulvic acids may delay the hydrolysis (Brons et al. 1985; Fernandes in preparation)

SOME RESULTS

Hydrolysis rates in relation to NH_4^+

Anaerobic Digestion Model No.1 (Batstone et al., 2002)

Anaerobic Bioconversion of Complex Substrates to Biogas Model (Angelidaki et al., 1999)

- Includes max. biod. & kh & VFA inhibit on hydrolysis
- Validated with co-digestion material (manure + org. ind. wastes)

Modified model

Will include: Conversion processes Maximum Biodegradability kh Hydrolysis inhibition

THANK YOU FOR YOUR ATTENTION

