

Dr. Andrew Salter University of Southampton

> Cropgen dissemination BOKU – IFA - Tulln 6th February 2006

Outline

- What are energy crops?
 - Different types of energy crops
- Criteria for selection
 - Crop yield
 - Energy efficiency in crop production
 - Secondary/alternative uses of the crop
 - Land use
 - Environmental impacts

What are energy crops?

- "Energy crops are those annual and perennial species which can be cultivated to produce solid, liquid or gaseous energy feedstocks". (FAO, 1996)
- Energy crops may either be used directly from harvest or stored for later processing.
- All crops have an energy value for burning can have other uses as well.

Energy crops

- crops for combustion
- crops for oil
- crops for sugar
- crops for starch
- crops for biogas

Crops for combustion

- Short rotation coppice
 - Willow
 - Poplar
- Perennial grasses
 - Miscanthus
 - Reed canary grass
 - Switchgrass

15-20 year stands Harvested once a year when dry Uses all above ground plant material

Crops for oil

- Oilseed crops
 - Oilseed rape
 - Sunflower seeds
 - Linseed
- Annual crops (harvest once a year)
- Can be used in crop rotations
- Also food crops
- Does not use all of crop material only seeds

Crops for ethanol

- Sugar crops
 - Sugar beet
 - Sugar cane
 - Sweet sorghum

- Starch crops
 - Wheat
 - Maize
 - Barley
 - Potatoes
 - Amaranth
- Annual crops (harvest once a year)
- Can be used in crop rotations
- Also food crops
- Does not use all of crop material

Crops for biogas

- Most organic material
- Can use crops
- Crop wastes
- Non-crops i.e weeds
- Verge cuttings etc.
- Can have multiple harvest per year
- Does use all of plant material
- Particularly relevant are forage crops

Advantages & disadvantages of energy crops

Advantages

- Capable of storing energy for use at will.
- Renewable.

(Hall, 1979)

- Are dependent on existing technology with minimal capital input.
- Can be developed with existing manpower and resources.
- Are reasonably priced.
- Are ecologically inoffensive and free of hazards (other than fire risk).

Disadvantages

- Land use competition.
- Land areas required.
- Supply uncertainty in initial phases for some fuels.
- Fertiliser and water requirements.

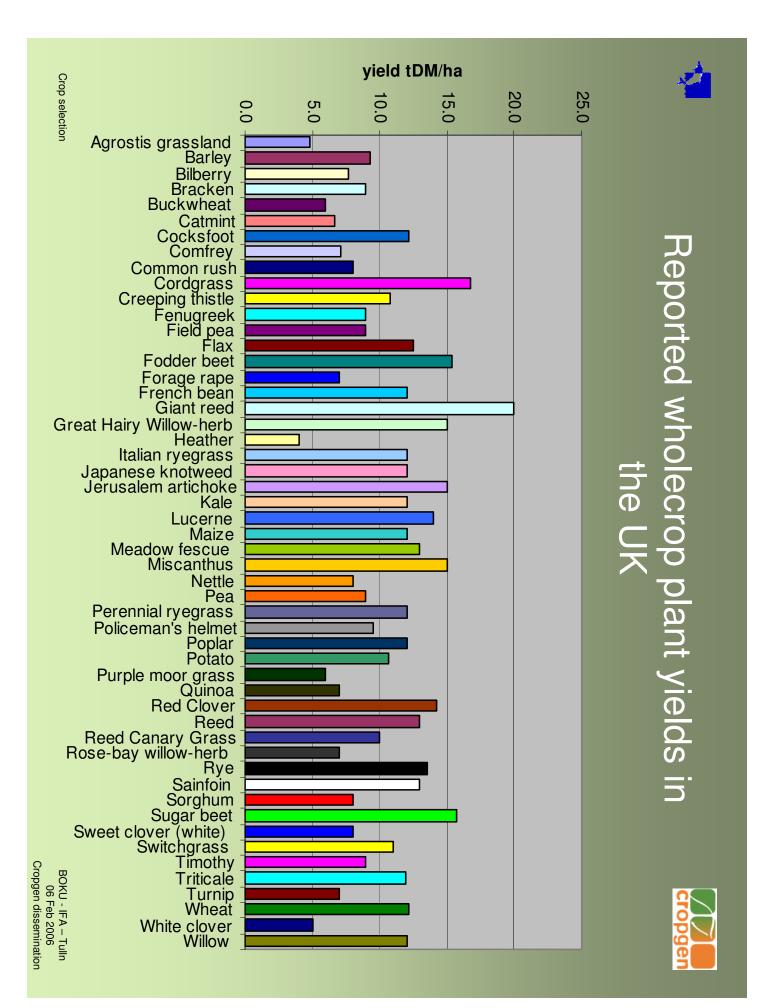
Crop selection

Criteria for selection of energy crops

- 1. Crop yield.
- 2. Input energy requirement.
- 3. Alternative uses of crops/secondary effects
- 4. Land use/availability.
- 5. Environmental impacts.

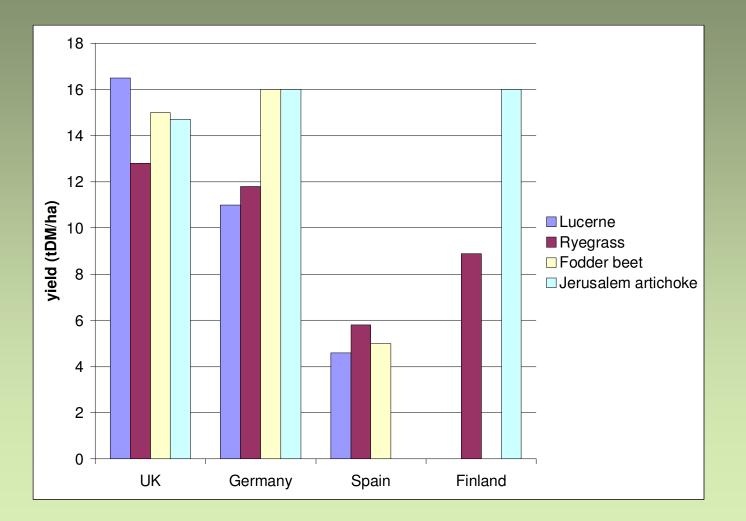
1. Crop yield

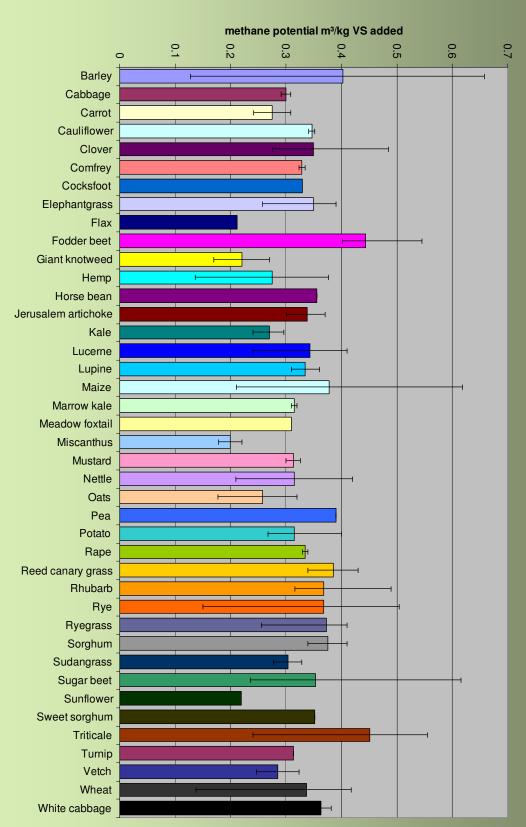
Crop selection



Purpose of crop

The yield of a crop depends on the purpose of the crop and the part of the crop that is harvested:


- specific crop part
 - oilseed rape (seed) = 3 tonnes / ha
 - wheat (grain) = 8 tonnes / ha
 - sugarbeet (beets) = 15 tonnes / ha
- wholecrop (dry matter)
 - wheat = 12 tonnes / ha
 - maize = 13 tonnes / ha
 - ryegrass = 15 tonnes / ha
 - miscanthus = 15 tonnes / ha

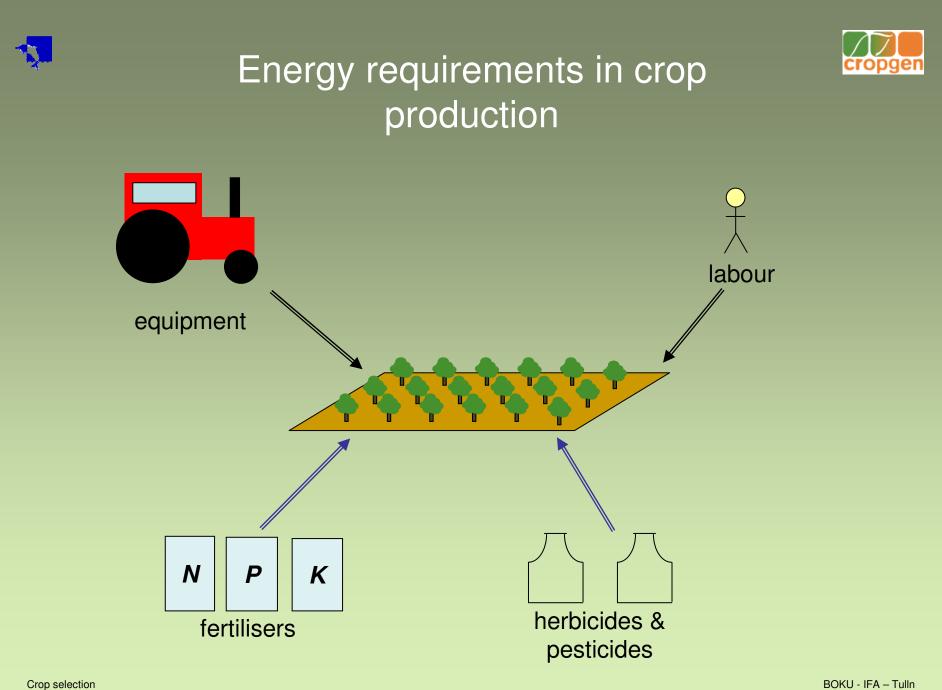


European yields

Crop selection

Methane potentials

2. Production efficiency


Crop selection

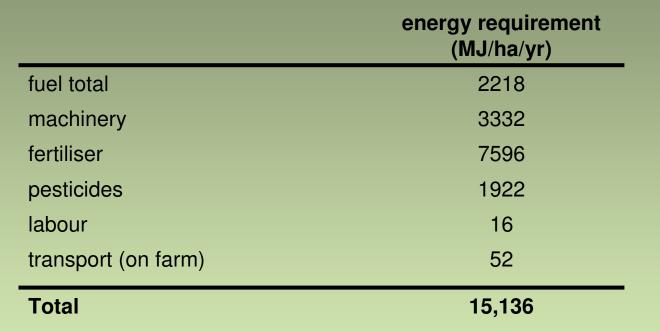
Agro-energetics/economics

- It is possible to calculate the average energy required to produce a crop.
- Using these values we can:
 - Make a comparison of crops and farming systems.
 - Identify the most 'energy efficient' crops.

06 Feb 2006 Cropgen dissemination

Fuel energy requirements

operation	energy requirement (MJ/ha)	average energy requirement (MJ/ha)
ploughing	624-1160	800
seedbed cultivations	138-278	160
fertiliser applications	59-88	81
combine harvesting	568-617	598



Indirect energy requirements

Average	energy	requirement
---------	--------	-------------

NH ₄ NO ₃	40.6 MJ/kg
P ₂ O ₅	15.8 MJ/kg
K ₂ O	9.3 MJ/kg
herbicides	264 MJ/kg a.i. (active ingredient)
fungicides	168 MJ/kg a.i.
insecticides	214 MJ/kg a.i.
machinery	

Energy requirements for a range of crops

crop	total energy input (GJ/ha)	reference
Oilseed rape	17.0	
Sugar beet	20.3	
Maize	15.6	calculated
Potatoes	24.22	
Winter wheat	19.12	
Winter barley	16.97	
Sugar beet	29.49	
Spring barley	14.45	(Hülsbergen and Kalk 2001)
spring sown grain	9.98-12.1	
Fodder beet	16.8-20.48	(Refsgaard et al. 1998)
Sugar beet	23.88	(Tzilivakis et al. 2005)
Maize	18.71	(Shapouri et al. 2002)
Oilseed rape	13.8	(Elsayed et al. 2003)

Crop selection

Fertiliser

Fossil fuel based fertiliser inputs have very high energy requirements

wheat

- total energy requirement
- fertiliser energy requirement

15,136 MJ/ha 7,596 MJ/ha

Alternatives

- Use digestate as a fertiliser
- Use legumes to provide nitrogen

Digestate

- Digestate contains most of the nutrients that were in the original feedstock.
- Can be applied directly or separated into:
 - a liquid slurry containing most of the nitrogen
 - a fibrous residue containing most of the phosphate and potassium.
- These can be applied to the land at the required time.
- Restrictions may be applied to the use of digestate from wastes other than crops.

Legumes

- Legume crops interact with bacteria to fix nitrogen from the air and soil.
- Include crops such as:
 - lupins
 - beans
 - clovers
 - lucerne
- Can be grown as part of a rotation system.
- Can be combined with other crops.
 - undersown
 - in grass leys

Energy balance for a lucerne crop

energy requirement (MJ/ha/yr)

	first year	second year on
fuel	2475	3851
machinery	1283	929
fertiliser	2326	2326
labour	13	23
transport (on farm)	56	223
Total	6,153	7,352
wheat	15,136	

3. Multiple uses of a crop

Crop selection

Crop use

- Crops can have more than a single use:
 - nitrogen fixation
 - cover/catch crops
 - soil enhancement
- Crops have multiple parts which can be harvested for alternate uses
 - sugar beet tops
 - green pea waste

4. Land availability

Crop selection

Where to grow energy crops

- As part of the crop rotation.
- As replacements for food crops.
- On set-aside land.
- Fallow ground.
- Verges.
- Underutilised 'waste' ground.
- Reclaimed land.

5. Environmental impacts

Crop selection

Mono-crops

Perennial

- Disadvantages
 - establishment
 - harvest times
 - duration
 - diversity
- Advantages
 - duration
 - low input requirements
 - carbon sequestration

Annual

- Disadvantages
 - high input requirements
 - disease resistance
 - diversity

Advantages
– yields

Mixed crops

- Advantages
 - crop rotations for soil benefits
 - crop rotations for farm and food benefits
 - pest control
 - plant and animal diversity
 - legumes for nitrogen fixing, catch crops, cover crops
- Disadvantages
 - lower yield over the whole farm
 - lower carbon sequestration

How Much Biomass can Europe Use Without Harming the Environment? European Environment Agency (2005)

- Maintain extensively cultivated agricultural areas.
 - existing grasslands can be used for providing a feedstock. This agrees with the cross-compliance requirement which requires grassland to not be transformed.
- At least 30% of the agricultural land dedicated to 'environmentally-oriented farming in 2030 in the member states.
 - AD links comprehensively into organic farming and crops can be chosen which maintain biodiversity.
- The introduction of new cropping systems can combine high yields with little fertiliser and pesticide input .
 - Reuse of digestate as a fertiliser, the use of legumes and cover crops .

The selection of crops for biogas production

- A number of factors can be considered:
 - low input crops e.g. grass good carbon sequestration, low fertiliser input if combined with legumes or use digestate
 - high yield crops e.g. fodder beet
 - underused crops e.g. Jerusalem artichoke
 - cover and catch crops, harvest and digest before ploughing in and use as fertiliser.
 - crops with multiple uses e.g. sugar beet (for beet & leaves for digestion)
 - crops with good storage abilities e.g. maize, grass
 - crops that will grow on a wide range of soil types
 - market for biomass produced

Conclusion

- Anaerobic digestion can make use any crop effectiveness dependent on the stage of harvest
- Crops can be chosen to fit in with existing farming systems
 - Farmers know what grows best on their land
- Crops can be chosen to fit best with EU legislation
- The energy difference between annuals and perennials is small compared to the difference between mineral and organic fertilisers
- Crops can be selected which have multiple uses
- For biogas production forage crops are a good start
 - need breeding programmes to increase biomass yields and exploit the benefits of crops for energy.

This work forms part of the Cropgen project (SES6-CT-2004-502824) funded under the 6th EU framework.

References

- European Environment Agency (2005) *Climate Change and a European Low-carbon Energy System*, European Environment Agency, 1/2005.
- Hall, D.O (1979) Solar Energy Conversion Through Biology, *Biologist*, 26(1): 16-22
- Hülsbergen, K.-J. and Kalk, W.-D. (2001) Energy Balances in Different Agricultural Systems Can They be Improved, *Proceedings of the International Fertiliser Society Proceedings No. 476*, Lisbon, The International Fertiliser Society, p.38.
- Refsgaard, K., Halberg, N. and Kristensen, E. S. (1998) Energy utilization in crop and dairy production in organic and conventional livestock production systems, *Agricultural Systems*, 57(4), pp.599-630.
- Tzilivakis, J., Warner, D. J., May, M., Lewis, K. A. and Jaggard, K. (2005) An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK, *Agricultural Systems*, 85(2), pp.101-119.
- Shapouri, H., Duffield, J. A. and Wang, M. (2002) *The Energy Balance of Corn Ethanol: An Update*, U.S. Department of Agriculture, Office of the
- Chief Economist, Office of Energy Policy and New Uses., Agricultural Economic Report No. 814.
- Elsayed, M. A., Matthews, R. and Mortimer, N. D. (2003) *Carbon and Energy Balances for a Range of Biofuels Options*, School of Environment and development, Sheffield Hallam University, B/B6/00784/REP.