Biogas Technology in Agrowaste Management in Europe

Prof. Jukka Rintala University of Jyväskylä Finland

Biogas Technology in Agriculture in Europe - Driving Forces

- Waste Treatment & Material Processing
- Direct Environmental Impacts
- Renewable Energy

Biogas Technology in Waste Processing and Hygienisation –driving forces 1

- Reduction of pathogens
 - less infections in the farm
 - no spreading of diseases
 - in many cases initially the most important reason
- Improved soil improver & nutrients availability
- Animal By-Product regulation have caused additional requirements & costs for biogas plants: less competative ?
- However, in the future all materials have to be hygienised (and controlled) before agricultural use ?

Biogas Technology - Direct Environmental Impacts – driving forces 2

- Less odours, increasingly important in obtaining environmental permits for new livestock centres
- Less nutrients and organic material leaching into water bodies
- Less evaporation of ammonia ?
- Reduced greenhouse gas emissions from manure management and soil applications ? Included in national climate policies ?

Renewable Energy – driving forces 3

Kyoto Protocol

- Increase of Renewable Energy in EU from 6 % in 1995 to 12 % by 2010, capacity increase 140 Mtoe/a
- Increase in Biogas Production, 15 Mtoe by 2010
- EU Directives
 - RES-E-directive 2001/77/EC opens markets for renewable electricity
 - CHP-directive (coming) stimulates micro-CHP < 50 kWe
 - GAS directive opens gas grids for biogas
 - Biofuel directive, 5.75 % by 2010

Renewable Energy – Driving Force 3 Making sustainability profitable ?

Subsidies

- Investments in biogas plants & production of electricity & fuel
- In some countries up to ca. 20 cent/kWh
- Selling green electricity, buying non-renewable electricity
- Higher price for biogas electricity from crops than from wastes
- More subsidies for smaller plants, new larger plants are split to smaller ones
- In energy sector 50 % European research money for nuclear energy

Biogas – Renewable Energy – Environmental Benefits

- Easy to store -renewable energy
- Different upgrading concepts are feasible both in large and small scale
 - Injection into gas grid
 - Combined heat and power generation
 - Vehicle fuel
- How to obtain highest environmental benefits from biogas ?
 - The importance & alternatives in replacing fossil fuels and decreasing greenhouse gas emission in different sectors, e.g. transport
 - Life cycle assessment including alternative /complementary renewable energy technologies are required
 - How we should produce heat, electricity, cooling and transport fuel in the future ?
 - Biogas for vehicle fuel, not for heat and electricity generation ? Case by case decisions ?
 - How subsidies should be used in the future ?

Status of Biogas in Selected European Countries

Uptake across Europe

COUNTRY	Farm related	Factors influencing the adoption of AD technology			
	digestion capacity				
Austria	139 + 50 underconstruction200 GWh installedor in construction in2004	 Regional and national government support for a renewable energy policy Guaranteed purchase of biogas produced electricity at preferential rates: 0.165 - 0.103 €kWh⁻¹ (depending on size of installation) 			
Germany	2500 (~4000 expected by end 2005) Anticipated installed electrical generating capacity of 950 MW by end 2005	 Renewable energy resources act ('feed in laws') Guaranteed priority purchase of biogas produced (and other renewable) electricity at preferential rates for a 20 year period, base price paid ranges from 0.084 - 0.115 € kWh⁻¹ Bonuses for electricity produced from energy crops, use of CHP, and use of new technologies; these can add a further 0.1€kWh⁻¹ Scale-down in subsidies from 2005 to encourage efficiency and process development 			

Uptake across Europe

COUNTRY	Farm related digestion capacity	Factors influencing the adoption of AD technology
Denmark	22 CAD receiving mainly (80%) animal slurry + 40 farm-scale digesters.	 Investment grants to help meet capital costs (currently 20%) Long term loans at low interest rates Legislative requirement for 9 month storage for slurry Favourable prices for biogas produced electricity Exemption from energy taxes Demonstration programmes and research support Opportunities for district heating
Sweden	10 CAD co- digestion plants + 5 farm-scale plants	• Encouragement of the use of biogas as a vehicle fuel through low taxation
Switzerland	69 farm-scale digesters	 Subsidy of biogas derived electricity prices at 0.10 € kWh⁻¹ Grants of up to 8% of installation costs

Co-digestion

- Most farm-based and CAD facilities use animal (cattle or pig slurry) slurry as the major substrate, often supplemented with other organic wastes or energy crops.
- In Germany ~94% of agro-biogas plants use co-digestion for more efficient gas production = electricity production.
- In Germany over 30 different organic by-products and wastes from food- and agro-industries are used, but energy crops and crop residues are most common as importing wastes onto the farm leads to reduced subsidies.
- Economic digestion of manure without co-substrate can only be achieved in large-scale farming.
- Shorter contracts with waste producers, more competition for waste among biogas plants and other uses of wastes

Biogas Potential in Europe

Agrowastes 1500 million tons/a of which 750 million tons are crop residues

Biogas Technology

Developments in Biogas Concept Technology

- Covered structures to recovery all gases
- Reactors: wet processes common, dry processes getting more common especially in crop digestion
- Post-digestion to recovery residual methane from digestate
- Biogas upgrading technology coming more common
- Decentralised biogas fuelling technology ?
- Concepts to ensure sufficient feedstocks for biogas production

Biogas Upgrading

Crops – a reminder

	Dry matter	Organic dry	Biogas Yield	Methane
Substrates	content	substance in	Nm3/T	content
	(DS%)	DS%	substrate	(%)
Dairy cow slurry	8	85	20	55
Fattening cattle slurry	10	85	34	55
Pig slurry	5	85	18	60
Chicken manure	25	75	93	65
Meadow grass average from 3-4 cuts/year	18	91	98	54
Maize silage	33	96	190	53
Grass silage average from 3-4 cuts/year	35	89	183	54
Grain milled	87	98	597	53
Corn-Cop-Mix, 5,3% fibre	60	98	391	53
Total plant grain silage	40	94	195	53
Potato distillery residues	6	87	35	56
Vegetable residues	6	87	35	56
Rape seed cake	91	93	612	63
Canteen residues high fat	18	92	90	68
Canteen residues low fat	14	82	44	69
Flotation fat	12	90	108	68